| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | :  |
| 1 | theorem | | ⊢  |
| | proveit.trigonometry.sine_linear_bound_nonpos |
| 2 | instantiation | 4, 57, 5 | ⊢  |
| | :  |
| 3 | instantiation | 6, 7, 65, 57, 8, 9*, 10* | ⊢  |
| | : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nonpos_real_is_real_nonpos |
| 5 | instantiation | 13, 11 | ⊢  |
| | : , :  |
| 6 | theorem | | ⊢  |
| | proveit.numbers.addition.weak_bound_via_left_term_bound |
| 7 | instantiation | 12, 51, 73 | ⊢  |
| | : , :  |
| 8 | instantiation | 13, 14 | ⊢  |
| | : , :  |
| 9 | instantiation | 54, 15, 16 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 17, 18, 32, 19 | ⊢  |
| | : , : , : , :  |
| 11 | instantiation | 20, 65, 66, 67 | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 13 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 14 | instantiation | 21, 65, 66, 67 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 54, 22, 23 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 54, 24, 25 | ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 18 | instantiation | 54, 26, 27 | ⊢  |
| | : , : , :  |
| 19 | instantiation | 28, 37 | ⊢  |
| | : , :  |
| 20 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.interval_oo_upper_bound |
| 21 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.interval_oo_lower_bound |
| 22 | instantiation | 59, 29 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 59, 33 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 38, 39, 106, 40, 41, 42, 30, 43, 46 | ⊢  |
| | : , : , : , : , : , :  |
| 25 | instantiation | 31, 46, 43, 32 | ⊢  |
| | : , : , :  |
| 26 | instantiation | 59, 33 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 54, 34, 35 | ⊢  |
| | : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 29 | instantiation | 59, 37 | ⊢  |
| | : , : , :  |
| 30 | instantiation | 36, 46 | ⊢  |
| | :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_31 |
| 32 | instantiation | 53 | ⊢  |
| | :  |
| 33 | instantiation | 59, 37 | ⊢  |
| | : , : , :  |
| 34 | instantiation | 38, 39, 106, 40, 41, 42, 45, 43, 46 | ⊢  |
| | : , : , : , : , : , :  |
| 35 | instantiation | 44, 45, 46, 47 | ⊢  |
| | : , : , :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 37 | instantiation | 48, 62, 77, 81, 49* | ⊢  |
| | : , :  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.addition.disassociation |
| 39 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 40 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 41 | instantiation | 50 | ⊢  |
| | : , :  |
| 42 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 43 | instantiation | 104, 84, 51 | ⊢  |
| | : , : , :  |
| 44 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_12 |
| 45 | instantiation | 104, 84, 57 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 104, 84, 52 | ⊢  |
| | : , : , :  |
| 47 | instantiation | 53 | ⊢  |
| | :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 49 | instantiation | 54, 55, 56 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 51 | instantiation | 72, 57 | ⊢  |
| | :  |
| 52 | instantiation | 58, 71, 80 | ⊢  |
| | : , :  |
| 53 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 54 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 55 | instantiation | 59, 60 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 61, 62, 63 | ⊢  |
| | : , :  |
| 57 | instantiation | 64, 65, 66, 67 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 59 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 60 | instantiation | 68, 69, 101, 70* | ⊢  |
| | : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.multiplication.commutation |
| 62 | instantiation | 104, 84, 80 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 104, 84, 71 | ⊢  |
| | : , : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.all_in_interval_oo__is__real |
| 65 | instantiation | 72, 73 | ⊢  |
| | :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 67 | assumption | | ⊢  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.neg_power_as_div |
| 69 | instantiation | 104, 74, 75 | ⊢  |
| | : , : , :  |
| 70 | instantiation | 76, 77 | ⊢  |
| | :  |
| 71 | instantiation | 104, 93, 78 | ⊢  |
| | : , : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 73 | instantiation | 79, 80, 85, 81 | ⊢  |
| | : , :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 75 | instantiation | 104, 82, 83 | ⊢  |
| | : , : , :  |
| 76 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 77 | instantiation | 104, 84, 85 | ⊢  |
| | : , : , :  |
| 78 | instantiation | 104, 86, 87 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.division.div_real_closure |
| 80 | instantiation | 104, 88, 89 | ⊢  |
| | : , : , :  |
| 81 | instantiation | 90, 103 | ⊢  |
| | :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 83 | instantiation | 104, 91, 92 | ⊢  |
| | : , : , :  |
| 84 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 85 | instantiation | 104, 93, 94 | ⊢  |
| | : , : , :  |
| 86 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
| 87 | instantiation | 95, 96, 97 | ⊢  |
| | : , :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 89 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 90 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 92 | instantiation | 104, 98, 103 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 94 | instantiation | 104, 99, 100 | ⊢  |
| | : , : , :  |
| 95 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_pos_closure |
| 96 | instantiation | 104, 102, 101 | ⊢  |
| | : , : , :  |
| 97 | instantiation | 104, 102, 103 | ⊢  |
| | : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 99 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 100 | instantiation | 104, 105, 106 | ⊢  |
| | : , : , :  |
| 101 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 102 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
| 103 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 104 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 105 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 106 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |