| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.addition.weak_bound_via_left_term_bound |
| 2 | instantiation | 8, 46, 68 | ⊢  |
| | : , :  |
| 3 | reference | 60 | ⊢  |
| 4 | reference | 52 | ⊢  |
| 5 | instantiation | 9, 10 | ⊢  |
| | : , :  |
| 6 | instantiation | 49, 11, 12 | ⊢  |
| | : , : , :  |
| 7 | instantiation | 13, 14, 27, 15 | ⊢  |
| | : , : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 9 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 10 | instantiation | 16, 60, 61, 62 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 49, 17, 18 | ⊢  |
| | : , : , :  |
| 12 | instantiation | 49, 19, 20 | ⊢  |
| | : , : , :  |
| 13 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 14 | instantiation | 49, 21, 22 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 23, 32 | ⊢  |
| | : , :  |
| 16 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.interval_oo_lower_bound |
| 17 | instantiation | 54, 24 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 54, 28 | ⊢  |
| | : , : , :  |
| 19 | instantiation | 33, 34, 101, 35, 36, 37, 25, 38, 41 | ⊢  |
| | : , : , : , : , : , :  |
| 20 | instantiation | 26, 41, 38, 27 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 54, 28 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 49, 29, 30 | ⊢  |
| | : , : , :  |
| 23 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 24 | instantiation | 54, 32 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 31, 41 | ⊢  |
| | :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_31 |
| 27 | instantiation | 48 | ⊢  |
| | :  |
| 28 | instantiation | 54, 32 | ⊢  |
| | : , : , :  |
| 29 | instantiation | 33, 34, 101, 35, 36, 37, 40, 38, 41 | ⊢  |
| | : , : , : , : , : , :  |
| 30 | instantiation | 39, 40, 41, 42 | ⊢  |
| | : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 32 | instantiation | 43, 57, 72, 76, 44* | ⊢  |
| | : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.addition.disassociation |
| 34 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 35 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 36 | instantiation | 45 | ⊢  |
| | : , :  |
| 37 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 38 | instantiation | 99, 79, 46 | ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_12 |
| 40 | instantiation | 99, 79, 52 | ⊢  |
| | : , : , :  |
| 41 | instantiation | 99, 79, 47 | ⊢  |
| | : , : , :  |
| 42 | instantiation | 48 | ⊢  |
| | :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 44 | instantiation | 49, 50, 51 | ⊢  |
| | : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 46 | instantiation | 67, 52 | ⊢  |
| | :  |
| 47 | instantiation | 53, 66, 75 | ⊢  |
| | : , :  |
| 48 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 49 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 50 | instantiation | 54, 55 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 56, 57, 58 | ⊢  |
| | : , :  |
| 52 | instantiation | 59, 60, 61, 62 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 54 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 55 | instantiation | 63, 64, 96, 65* | ⊢  |
| | : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.multiplication.commutation |
| 57 | instantiation | 99, 79, 75 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 99, 79, 66 | ⊢  |
| | : , : , :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.all_in_interval_oo__is__real |
| 60 | instantiation | 67, 68 | ⊢  |
| | :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 62 | assumption | | ⊢  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.neg_power_as_div |
| 64 | instantiation | 99, 69, 70 | ⊢  |
| | : , : , :  |
| 65 | instantiation | 71, 72 | ⊢  |
| | :  |
| 66 | instantiation | 99, 88, 73 | ⊢  |
| | : , : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 68 | instantiation | 74, 75, 80, 76 | ⊢  |
| | : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 70 | instantiation | 99, 77, 78 | ⊢  |
| | : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 72 | instantiation | 99, 79, 80 | ⊢  |
| | : , : , :  |
| 73 | instantiation | 99, 81, 82 | ⊢  |
| | : , : , :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.division.div_real_closure |
| 75 | instantiation | 99, 83, 84 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 85, 98 | ⊢  |
| | :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 78 | instantiation | 99, 86, 87 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 80 | instantiation | 99, 88, 89 | ⊢  |
| | : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
| 82 | instantiation | 90, 91, 92 | ⊢  |
| | : , :  |
| 83 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 84 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 85 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 86 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 87 | instantiation | 99, 93, 98 | ⊢  |
| | : , : , :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 89 | instantiation | 99, 94, 95 | ⊢  |
| | : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_pos_closure |
| 91 | instantiation | 99, 97, 96 | ⊢  |
| | : , : , :  |
| 92 | instantiation | 99, 97, 98 | ⊢  |
| | : , : , :  |
| 93 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 94 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 95 | instantiation | 99, 100, 101 | ⊢  |
| | : , : , :  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 97 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 99 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 100 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 101 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |