| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | :  |
| 1 | theorem | | ⊢  |
| | proveit.trigonometry.sine_linear_bound_nonpos |
| 2 | instantiation | 4, 54, 5 | ⊢  |
| | :  |
| 3 | instantiation | 6, 7, 62, 54, 8, 9*, 10* | ⊢  |
| | : , : , :  |
| 4 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.nonpos_real_is_real_nonpos |
| 5 | instantiation | 11, 62, 63, 64 | ⊢  |
| | : , : , :  |
| 6 | theorem | | ⊢  |
| | proveit.numbers.addition.weak_bound_via_left_term_bound |
| 7 | instantiation | 12, 48, 70 | ⊢  |
| | : , :  |
| 8 | instantiation | 13, 62, 63, 64 | ⊢  |
| | : , : , :  |
| 9 | instantiation | 51, 14, 15 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 16, 17, 29, 18 | ⊢  |
| | : , : , : , :  |
| 11 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.interval_cc_upper_bound |
| 12 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 13 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.interval_cc_lower_bound |
| 14 | instantiation | 51, 19, 20 | ⊢  |
| | : , : , :  |
| 15 | instantiation | 51, 21, 22 | ⊢  |
| | : , : , :  |
| 16 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 17 | instantiation | 51, 23, 24 | ⊢  |
| | : , : , :  |
| 18 | instantiation | 25, 34 | ⊢  |
| | : , :  |
| 19 | instantiation | 56, 26 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 56, 30 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 35, 36, 103, 37, 38, 39, 27, 40, 43 | ⊢  |
| | : , : , : , : , : , :  |
| 22 | instantiation | 28, 43, 40, 29 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 56, 30 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 51, 31, 32 | ⊢  |
| | : , : , :  |
| 25 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 26 | instantiation | 56, 34 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 33, 43 | ⊢  |
| | :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_31 |
| 29 | instantiation | 50 | ⊢  |
| | :  |
| 30 | instantiation | 56, 34 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 35, 36, 103, 37, 38, 39, 42, 40, 43 | ⊢  |
| | : , : , : , : , : , :  |
| 32 | instantiation | 41, 42, 43, 44 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 34 | instantiation | 45, 59, 74, 78, 46* | ⊢  |
| | : , :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.addition.disassociation |
| 36 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 37 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 38 | instantiation | 47 | ⊢  |
| | : , :  |
| 39 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 40 | instantiation | 101, 81, 48 | ⊢  |
| | : , : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_12 |
| 42 | instantiation | 101, 81, 54 | ⊢  |
| | : , : , :  |
| 43 | instantiation | 101, 81, 49 | ⊢  |
| | : , : , :  |
| 44 | instantiation | 50 | ⊢  |
| | :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 46 | instantiation | 51, 52, 53 | ⊢  |
| | : , : , :  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 48 | instantiation | 69, 54 | ⊢  |
| | :  |
| 49 | instantiation | 55, 68, 77 | ⊢  |
| | : , :  |
| 50 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 51 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 52 | instantiation | 56, 57 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 58, 59, 60 | ⊢  |
| | : , :  |
| 54 | instantiation | 61, 62, 63, 64 | ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 56 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 57 | instantiation | 65, 66, 98, 67* | ⊢  |
| | : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.multiplication.commutation |
| 59 | instantiation | 101, 81, 77 | ⊢  |
| | : , : , :  |
| 60 | instantiation | 101, 81, 68 | ⊢  |
| | : , : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.all_in_interval_cc__is__real |
| 62 | instantiation | 69, 70 | ⊢  |
| | :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 64 | assumption | | ⊢  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.neg_power_as_div |
| 66 | instantiation | 101, 71, 72 | ⊢  |
| | : , : , :  |
| 67 | instantiation | 73, 74 | ⊢  |
| | :  |
| 68 | instantiation | 101, 90, 75 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 70 | instantiation | 76, 77, 82, 78 | ⊢  |
| | : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 72 | instantiation | 101, 79, 80 | ⊢  |
| | : , : , :  |
| 73 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 74 | instantiation | 101, 81, 82 | ⊢  |
| | : , : , :  |
| 75 | instantiation | 101, 83, 84 | ⊢  |
| | : , : , :  |
| 76 | theorem | | ⊢  |
| | proveit.numbers.division.div_real_closure |
| 77 | instantiation | 101, 85, 86 | ⊢  |
| | : , : , :  |
| 78 | instantiation | 87, 100 | ⊢  |
| | :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 80 | instantiation | 101, 88, 89 | ⊢  |
| | : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 82 | instantiation | 101, 90, 91 | ⊢  |
| | : , : , :  |
| 83 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
| 84 | instantiation | 92, 93, 94 | ⊢  |
| | : , :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 86 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 88 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 89 | instantiation | 101, 95, 100 | ⊢  |
| | : , : , :  |
| 90 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 91 | instantiation | 101, 96, 97 | ⊢  |
| | : , : , :  |
| 92 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_pos_closure |
| 93 | instantiation | 101, 99, 98 | ⊢  |
| | : , : , :  |
| 94 | instantiation | 101, 99, 100 | ⊢  |
| | : , : , :  |
| 95 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 96 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 97 | instantiation | 101, 102, 103 | ⊢  |
| | : , : , :  |
| 98 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 99 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
| 100 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 101 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 102 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 103 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |