| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6*, 7* | ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.addition.weak_bound_via_left_term_bound |
| 2 | instantiation | 8, 44, 66 | ⊢  |
| | : , :  |
| 3 | reference | 58 | ⊢  |
| 4 | reference | 50 | ⊢  |
| 5 | instantiation | 9, 58, 59, 60 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 47, 10, 11 | ⊢  |
| | : , : , :  |
| 7 | instantiation | 12, 13, 25, 14 | ⊢  |
| | : , : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 9 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.interval_cc_lower_bound |
| 10 | instantiation | 47, 15, 16 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 47, 17, 18 | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.logic.equality.four_chain_transitivity |
| 13 | instantiation | 47, 19, 20 | ⊢  |
| | : , : , :  |
| 14 | instantiation | 21, 30 | ⊢  |
| | : , :  |
| 15 | instantiation | 52, 22 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 52, 26 | ⊢  |
| | : , : , :  |
| 17 | instantiation | 31, 32, 99, 33, 34, 35, 23, 36, 39 | ⊢  |
| | : , : , : , : , : , :  |
| 18 | instantiation | 24, 39, 36, 25 | ⊢  |
| | : , : , :  |
| 19 | instantiation | 52, 26 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 47, 27, 28 | ⊢  |
| | : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 22 | instantiation | 52, 30 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 29, 39 | ⊢  |
| | :  |
| 24 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_31 |
| 25 | instantiation | 46 | ⊢  |
| | :  |
| 26 | instantiation | 52, 30 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 31, 32, 99, 33, 34, 35, 38, 36, 39 | ⊢  |
| | : , : , : , : , : , :  |
| 28 | instantiation | 37, 38, 39, 40 | ⊢  |
| | : , : , :  |
| 29 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 30 | instantiation | 41, 55, 70, 74, 42* | ⊢  |
| | : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.addition.disassociation |
| 32 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 33 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 34 | instantiation | 43 | ⊢  |
| | : , :  |
| 35 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 36 | instantiation | 97, 77, 44 | ⊢  |
| | : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_12 |
| 38 | instantiation | 97, 77, 50 | ⊢  |
| | : , : , :  |
| 39 | instantiation | 97, 77, 45 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 46 | ⊢  |
| | :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.division.div_as_mult |
| 42 | instantiation | 47, 48, 49 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 44 | instantiation | 65, 50 | ⊢  |
| | :  |
| 45 | instantiation | 51, 64, 73 | ⊢  |
| | : , :  |
| 46 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 47 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 48 | instantiation | 52, 53 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 54, 55, 56 | ⊢  |
| | : , :  |
| 50 | instantiation | 57, 58, 59, 60 | ⊢  |
| | : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 52 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 53 | instantiation | 61, 62, 94, 63* | ⊢  |
| | : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.multiplication.commutation |
| 55 | instantiation | 97, 77, 73 | ⊢  |
| | : , : , :  |
| 56 | instantiation | 97, 77, 64 | ⊢  |
| | : , : , :  |
| 57 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.all_in_interval_cc__is__real |
| 58 | instantiation | 65, 66 | ⊢  |
| | :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 60 | assumption | | ⊢  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.neg_power_as_div |
| 62 | instantiation | 97, 67, 68 | ⊢  |
| | : , : , :  |
| 63 | instantiation | 69, 70 | ⊢  |
| | :  |
| 64 | instantiation | 97, 86, 71 | ⊢  |
| | : , : , :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 66 | instantiation | 72, 73, 78, 74 | ⊢  |
| | : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 68 | instantiation | 97, 75, 76 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.complex_x_to_first_power_is_x |
| 70 | instantiation | 97, 77, 78 | ⊢  |
| | : , : , :  |
| 71 | instantiation | 97, 79, 80 | ⊢  |
| | : , : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.division.div_real_closure |
| 73 | instantiation | 97, 81, 82 | ⊢  |
| | : , : , :  |
| 74 | instantiation | 83, 96 | ⊢  |
| | :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 76 | instantiation | 97, 84, 85 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 78 | instantiation | 97, 86, 87 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.rational_pos_within_rational |
| 80 | instantiation | 88, 89, 90 | ⊢  |
| | : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 83 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 84 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 85 | instantiation | 97, 91, 96 | ⊢  |
| | : , : , :  |
| 86 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 87 | instantiation | 97, 92, 93 | ⊢  |
| | : , : , :  |
| 88 | theorem | | ⊢  |
| | proveit.numbers.division.div_rational_pos_closure |
| 89 | instantiation | 97, 95, 94 | ⊢  |
| | : , : , :  |
| 90 | instantiation | 97, 95, 96 | ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 92 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 93 | instantiation | 97, 98, 99 | ⊢  |
| | : , : , :  |
| 94 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 95 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nat_pos_within_rational_pos |
| 96 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 97 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 98 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 99 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |