| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4* | ⊢  |
| | : , :  |
| 1 | theorem | | ⊢  |
| | proveit.trigonometry.complex_unit_circle_chord_length |
| 2 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 3 | reference | 51 | ⊢  |
| 4 | instantiation | 12, 5, 6 | ⊢  |
| | : , : , :  |
| 5 | instantiation | 19, 7 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 12, 8, 9 | ⊢  |
| | : , : , :  |
| 7 | instantiation | 12, 10, 11 | ⊢  |
| | : , : , :  |
| 8 | instantiation | 12, 13, 14 | ⊢  |
| | : , : , :  |
| 9 | instantiation | 15, 24 | ⊢  |
| | :  |
| 10 | instantiation | 19, 16 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 17, 42, 18* | ⊢  |
| | :  |
| 12 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 13 | instantiation | 19, 20 | ⊢  |
| | : , : , :  |
| 14 | instantiation | 21, 22, 23, 24, 25* | ⊢  |
| | : , : , :  |
| 15 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 16 | instantiation | 26, 27 | ⊢  |
| | :  |
| 17 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_even |
| 18 | instantiation | 28, 29, 30, 74, 75, 76, 31*, 32* | ⊢  |
| | : , :  |
| 19 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 20 | instantiation | 33, 71, 91, 70, 34, 72, 74, 75, 39 | ⊢  |
| | : , : , : , : , : , :  |
| 21 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 22 | instantiation | 89, 36, 35 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 89, 36, 37 | ⊢  |
| | : , : , :  |
| 24 | instantiation | 38, 75, 39 | ⊢  |
| | : , :  |
| 25 | instantiation | 40, 74 | ⊢  |
| | :  |
| 26 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 27 | instantiation | 41, 42 | ⊢  |
| | :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_prod |
| 29 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 30 | instantiation | 43 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 45, 44 | ⊢  |
| | :  |
| 32 | instantiation | 45, 46 | ⊢  |
| | :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 34 | instantiation | 78 | ⊢  |
| | : , :  |
| 35 | instantiation | 89, 48, 47 | ⊢  |
| | : , : , :  |
| 36 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 37 | instantiation | 89, 48, 49 | ⊢  |
| | : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 39 | instantiation | 89, 81, 50 | ⊢  |
| | : , : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 41 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 42 | instantiation | 89, 81, 51 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 44 | instantiation | 52, 91 | ⊢  |
| | :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_non_neg_elim |
| 46 | instantiation | 53, 54 | ⊢  |
| | : , :  |
| 47 | instantiation | 89, 56, 55 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 49 | instantiation | 89, 56, 57 | ⊢  |
| | : , : , :  |
| 50 | instantiation | 89, 58, 59 | ⊢  |
| | : , : , :  |
| 51 | instantiation | 60, 61, 62 | ⊢  |
| | : , : , :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
| 53 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 54 | instantiation | 63, 86 | ⊢  |
| | :  |
| 55 | instantiation | 89, 65, 64 | ⊢  |
| | : , : , :  |
| 56 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 57 | instantiation | 89, 65, 66 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
| 59 | instantiation | 67, 76 | ⊢  |
| | :  |
| 60 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 61 | instantiation | 77, 68, 82 | ⊢  |
| | : , :  |
| 62 | instantiation | 69, 70, 91, 71, 72, 73, 74, 75, 76 | ⊢  |
| | : , : , : , : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
| 64 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 65 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 67 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_complex_closure |
| 68 | instantiation | 77, 79, 80 | ⊢  |
| | : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 70 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 71 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 72 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 73 | instantiation | 78 | ⊢  |
| | : , :  |
| 74 | instantiation | 89, 81, 79 | ⊢  |
| | : , : , :  |
| 75 | instantiation | 89, 81, 80 | ⊢  |
| | : , : , :  |
| 76 | instantiation | 89, 81, 82 | ⊢  |
| | : , : , :  |
| 77 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 78 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 79 | instantiation | 89, 83, 84 | ⊢  |
| | : , : , :  |
| 80 | instantiation | 89, 85, 86 | ⊢  |
| | : , : , :  |
| 81 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 82 | assumption | | ⊢  |
| 83 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 84 | instantiation | 89, 87, 88 | ⊢  |
| | : , : , :  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 86 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 88 | instantiation | 89, 90, 91 | ⊢  |
| | : , : , :  |
| 89 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 90 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 91 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |