| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 9 | ⊢  |
| 2 | instantiation | 16, 4 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 9, 5, 6 | ⊢  |
| | : , : , :  |
| 4 | instantiation | 9, 7, 8 | ⊢  |
| | : , : , :  |
| 5 | instantiation | 9, 10, 11 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 12, 21 | ⊢  |
| | :  |
| 7 | instantiation | 16, 13 | ⊢  |
| | : , : , :  |
| 8 | instantiation | 14, 39, 15* | ⊢  |
| | :  |
| 9 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 10 | instantiation | 16, 17 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 18, 19, 20, 21, 22* | ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 13 | instantiation | 23, 24 | ⊢  |
| | :  |
| 14 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_even |
| 15 | instantiation | 25, 26, 27, 71, 72, 73, 28*, 29* | ⊢  |
| | : , :  |
| 16 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 17 | instantiation | 30, 68, 88, 67, 31, 69, 71, 72, 36 | ⊢  |
| | : , : , : , : , : , :  |
| 18 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 19 | instantiation | 86, 33, 32 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 86, 33, 34 | ⊢  |
| | : , : , :  |
| 21 | instantiation | 35, 72, 36 | ⊢  |
| | : , :  |
| 22 | instantiation | 37, 71 | ⊢  |
| | :  |
| 23 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 24 | instantiation | 38, 39 | ⊢  |
| | :  |
| 25 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_prod |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 27 | instantiation | 40 | ⊢  |
| | : , : , :  |
| 28 | instantiation | 42, 41 | ⊢  |
| | :  |
| 29 | instantiation | 42, 43 | ⊢  |
| | :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 31 | instantiation | 75 | ⊢  |
| | : , :  |
| 32 | instantiation | 86, 45, 44 | ⊢  |
| | : , : , :  |
| 33 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 34 | instantiation | 86, 45, 46 | ⊢  |
| | : , : , :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 36 | instantiation | 86, 78, 47 | ⊢  |
| | : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 38 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 39 | instantiation | 86, 78, 48 | ⊢  |
| | : , : , :  |
| 40 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 41 | instantiation | 49, 88 | ⊢  |
| | :  |
| 42 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_non_neg_elim |
| 43 | instantiation | 50, 51 | ⊢  |
| | : , :  |
| 44 | instantiation | 86, 53, 52 | ⊢  |
| | : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 46 | instantiation | 86, 53, 54 | ⊢  |
| | : , : , :  |
| 47 | instantiation | 86, 55, 56 | ⊢  |
| | : , : , :  |
| 48 | instantiation | 57, 58, 59 | ⊢  |
| | : , : , :  |
| 49 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
| 50 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 51 | instantiation | 60, 83 | ⊢  |
| | :  |
| 52 | instantiation | 86, 62, 61 | ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 54 | instantiation | 86, 62, 63 | ⊢  |
| | : , : , :  |
| 55 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
| 56 | instantiation | 64, 73 | ⊢  |
| | :  |
| 57 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 58 | instantiation | 74, 65, 79 | ⊢  |
| | : , :  |
| 59 | instantiation | 66, 67, 88, 68, 69, 70, 71, 72, 73 | ⊢  |
| | : , : , : , : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
| 61 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 62 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 63 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 64 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_complex_closure |
| 65 | instantiation | 74, 76, 77 | ⊢  |
| | : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 67 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 68 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 69 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 70 | instantiation | 75 | ⊢  |
| | : , :  |
| 71 | instantiation | 86, 78, 76 | ⊢  |
| | : , : , :  |
| 72 | instantiation | 86, 78, 77 | ⊢  |
| | : , : , :  |
| 73 | instantiation | 86, 78, 79 | ⊢  |
| | : , : , :  |
| 74 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 75 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 76 | instantiation | 86, 80, 81 | ⊢  |
| | : , : , :  |
| 77 | instantiation | 86, 82, 83 | ⊢  |
| | : , : , :  |
| 78 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 79 | assumption | | ⊢  |
| 80 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 81 | instantiation | 86, 84, 85 | ⊢  |
| | : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 83 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 84 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 85 | instantiation | 86, 87, 88 | ⊢  |
| | : , : , :  |
| 86 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 88 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |