| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4*, 5*, 6* | ⊢  |
| | : , :  |
| 1 | theorem | | ⊢  |
| | proveit.trigonometry.complex_unit_circle_chord_length |
| 2 | instantiation | 7, 90, 128 | ⊢  |
| | : , :  |
| 3 | reference | 128 | ⊢  |
| 4 | instantiation | 8, 90, 9* | ⊢  |
| | :  |
| 5 | instantiation | 85, 10, 11 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 85, 12, 13 | ⊢  |
| | : , : , :  |
| 7 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 8 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.unit_length_complex_polar_negation |
| 9 | instantiation | 14, 15 | ⊢  |
| | : , :  |
| 10 | instantiation | 98, 16 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 17, 70 | ⊢  |
| | :  |
| 12 | instantiation | 98, 18 | ⊢  |
| | : , : , :  |
| 13 | instantiation | 85, 19, 20 | ⊢  |
| | : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 15 | instantiation | 98, 21 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 104, 22, 23 | ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.numbers.negation.double_negation |
| 18 | instantiation | 85, 24, 25 | ⊢  |
| | : , : , :  |
| 19 | instantiation | 85, 26, 27 | ⊢  |
| | : , : , :  |
| 20 | instantiation | 28, 46 | ⊢  |
| | :  |
| 21 | instantiation | 85, 29, 30 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 31, 88, 32, 33*, 34* | ⊢  |
| | : , :  |
| 23 | instantiation | 35, 36 | ⊢  |
| | :  |
| 24 | instantiation | 98, 37 | ⊢  |
| | : , : , :  |
| 25 | instantiation | 38, 39, 50, 120, 121, 122, 40*, 41* | ⊢  |
| | : , :  |
| 26 | instantiation | 98, 42 | ⊢  |
| | : , : , :  |
| 27 | instantiation | 43, 44, 45, 46, 47* | ⊢  |
| | : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 29 | instantiation | 48, 117, 139, 124, 118, 119, 120, 121, 112, 122 | ⊢  |
| | : , : , : , : , : , : , :  |
| 30 | instantiation | 61, 124, 49, 117, 50, 118, 112, 120, 121, 122 | ⊢  |
| | : , : , : , : , : , :  |
| 31 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.complex_polar_negation |
| 32 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.zero_is_real |
| 33 | instantiation | 51, 121 | ⊢  |
| | :  |
| 34 | instantiation | 85, 52, 53 | ⊢  |
| | : , : , :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_left |
| 36 | instantiation | 54, 101, 55 | ⊢  |
| | : , :  |
| 37 | instantiation | 85, 56, 57 | ⊢  |
| | : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_prod |
| 39 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 40 | instantiation | 59, 58 | ⊢  |
| | :  |
| 41 | instantiation | 59, 60 | ⊢  |
| | :  |
| 42 | instantiation | 61, 124, 139, 117, 62, 118, 120, 121, 66 | ⊢  |
| | : , : , : , : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 44 | instantiation | 137, 64, 63 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 137, 64, 65 | ⊢  |
| | : , : , :  |
| 46 | instantiation | 71, 121, 66 | ⊢  |
| | : , :  |
| 47 | instantiation | 69, 120 | ⊢  |
| | :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 49 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat3 |
| 50 | instantiation | 67 | ⊢  |
| | : , : , :  |
| 51 | theorem | | ⊢  |
| | proveit.numbers.addition.elim_zero_left |
| 52 | instantiation | 98, 68 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 69, 70 | ⊢  |
| | :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 55 | instantiation | 71, 112, 121 | ⊢  |
| | : , :  |
| 56 | instantiation | 72, 117, 139, 124, 118, 73, 76, 121, 74 | ⊢  |
| | : , : , : , : , : , :  |
| 57 | instantiation | 75, 121, 76, 77 | ⊢  |
| | : , : , :  |
| 58 | instantiation | 78, 139 | ⊢  |
| | :  |
| 59 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_non_neg_elim |
| 60 | instantiation | 79, 80 | ⊢  |
| | : , :  |
| 61 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 62 | instantiation | 126 | ⊢  |
| | : , :  |
| 63 | instantiation | 137, 82, 81 | ⊢  |
| | : , : , :  |
| 64 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 65 | instantiation | 137, 82, 83 | ⊢  |
| | : , : , :  |
| 66 | instantiation | 137, 129, 84 | ⊢  |
| | : , : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 68 | instantiation | 85, 86, 87 | ⊢  |
| | : , : , :  |
| 69 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 70 | instantiation | 137, 129, 88 | ⊢  |
| | : , : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 72 | theorem | | ⊢  |
| | proveit.numbers.addition.disassociation |
| 73 | instantiation | 126 | ⊢  |
| | : , :  |
| 74 | instantiation | 137, 129, 89 | ⊢  |
| | : , : , :  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_23 |
| 76 | instantiation | 137, 129, 90 | ⊢  |
| | : , : , :  |
| 77 | instantiation | 91 | ⊢  |
| | :  |
| 78 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
| 79 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 80 | instantiation | 92, 134 | ⊢  |
| | :  |
| 81 | instantiation | 137, 94, 93 | ⊢  |
| | : , : , :  |
| 82 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 83 | instantiation | 137, 94, 95 | ⊢  |
| | : , : , :  |
| 84 | instantiation | 137, 96, 97 | ⊢  |
| | : , : , :  |
| 85 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 86 | instantiation | 98, 99 | ⊢  |
| | : , : , :  |
| 87 | instantiation | 100, 101 | ⊢  |
| | :  |
| 88 | instantiation | 137, 131, 102 | ⊢  |
| | : , : , :  |
| 89 | instantiation | 103, 128 | ⊢  |
| | :  |
| 90 | instantiation | 104, 105, 106 | ⊢  |
| | : , : , :  |
| 91 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 92 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
| 93 | instantiation | 137, 108, 107 | ⊢  |
| | : , : , :  |
| 94 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 95 | instantiation | 137, 108, 109 | ⊢  |
| | : , : , :  |
| 96 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
| 97 | instantiation | 110, 122 | ⊢  |
| | :  |
| 98 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 99 | instantiation | 111, 112 | ⊢  |
| | :  |
| 100 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_zero_eq_one |
| 101 | instantiation | 137, 129, 113 | ⊢  |
| | : , : , :  |
| 102 | instantiation | 137, 135, 114 | ⊢  |
| | : , : , :  |
| 103 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 104 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 105 | instantiation | 125, 115, 130 | ⊢  |
| | : , :  |
| 106 | instantiation | 116, 117, 139, 124, 118, 119, 120, 121, 122 | ⊢  |
| | : , : , : , : , : , :  |
| 107 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 108 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 109 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 110 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_complex_closure |
| 111 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_zero_right |
| 112 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.i_is_complex |
| 113 | instantiation | 137, 133, 123 | ⊢  |
| | : , : , :  |
| 114 | instantiation | 137, 138, 124 | ⊢  |
| | : , : , :  |
| 115 | instantiation | 125, 127, 128 | ⊢  |
| | : , :  |
| 116 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 117 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 118 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 119 | instantiation | 126 | ⊢  |
| | : , :  |
| 120 | instantiation | 137, 129, 127 | ⊢  |
| | : , : , :  |
| 121 | instantiation | 137, 129, 128 | ⊢  |
| | : , : , :  |
| 122 | instantiation | 137, 129, 130 | ⊢  |
| | : , : , :  |
| 123 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.e_is_real_pos |
| 124 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 125 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 126 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 127 | instantiation | 137, 131, 132 | ⊢  |
| | : , : , :  |
| 128 | instantiation | 137, 133, 134 | ⊢  |
| | : , : , :  |
| 129 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 130 | assumption | | ⊢  |
| 131 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 132 | instantiation | 137, 135, 136 | ⊢  |
| | : , : , :  |
| 133 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 134 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 135 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 136 | instantiation | 137, 138, 139 | ⊢  |
| | : , : , :  |
| 137 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 138 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 139 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |