| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3 | ⊢  |
| | : , : , :  |
| 1 | reference | 25 | ⊢  |
| 2 | instantiation | 18, 4 | ⊢  |
| | : , : , :  |
| 3 | instantiation | 25, 5, 6 | ⊢  |
| | : , : , :  |
| 4 | instantiation | 25, 7, 8 | ⊢  |
| | : , : , :  |
| 5 | instantiation | 25, 9, 10 | ⊢  |
| | : , : , :  |
| 6 | instantiation | 11, 23 | ⊢  |
| | :  |
| 7 | instantiation | 18, 12 | ⊢  |
| | : , : , :  |
| 8 | instantiation | 13, 14, 15, 76, 77, 78, 16*, 17* | ⊢  |
| | : , :  |
| 9 | instantiation | 18, 19 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 20, 21, 22, 23, 24* | ⊢  |
| | : , : , :  |
| 11 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 12 | instantiation | 25, 26, 27 | ⊢  |
| | : , : , :  |
| 13 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_prod |
| 14 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat3 |
| 15 | instantiation | 28 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 30, 29 | ⊢  |
| | :  |
| 17 | instantiation | 30, 31 | ⊢  |
| | :  |
| 18 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 19 | instantiation | 32, 73, 93, 72, 33, 74, 76, 77, 38 | ⊢  |
| | : , : , : , : , : , :  |
| 20 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 21 | instantiation | 91, 35, 34 | ⊢  |
| | : , : , :  |
| 22 | instantiation | 91, 35, 36 | ⊢  |
| | : , : , :  |
| 23 | instantiation | 37, 77, 38 | ⊢  |
| | : , :  |
| 24 | instantiation | 39, 76 | ⊢  |
| | :  |
| 25 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 26 | instantiation | 40, 72, 93, 73, 74, 41, 44, 77, 42 | ⊢  |
| | : , : , : , : , : , :  |
| 27 | instantiation | 43, 77, 44, 45 | ⊢  |
| | : , : , :  |
| 28 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_3_typical_eq |
| 29 | instantiation | 46, 93 | ⊢  |
| | :  |
| 30 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_non_neg_elim |
| 31 | instantiation | 47, 48 | ⊢  |
| | : , :  |
| 32 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 33 | instantiation | 80 | ⊢  |
| | : , :  |
| 34 | instantiation | 91, 50, 49 | ⊢  |
| | : , : , :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 36 | instantiation | 91, 50, 51 | ⊢  |
| | : , : , :  |
| 37 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 38 | instantiation | 91, 83, 52 | ⊢  |
| | : , : , :  |
| 39 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 40 | theorem | | ⊢  |
| | proveit.numbers.addition.disassociation |
| 41 | instantiation | 80 | ⊢  |
| | : , :  |
| 42 | instantiation | 91, 83, 53 | ⊢  |
| | : , : , :  |
| 43 | theorem | | ⊢  |
| | proveit.numbers.addition.subtraction.add_cancel_triple_23 |
| 44 | instantiation | 91, 83, 54 | ⊢  |
| | : , : , :  |
| 45 | instantiation | 55 | ⊢  |
| | :  |
| 46 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.natural_lower_bound |
| 47 | theorem | | ⊢  |
| | proveit.numbers.ordering.relax_less |
| 48 | instantiation | 56, 88 | ⊢  |
| | :  |
| 49 | instantiation | 91, 58, 57 | ⊢  |
| | : , : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 51 | instantiation | 91, 58, 59 | ⊢  |
| | : , : , :  |
| 52 | instantiation | 91, 60, 61 | ⊢  |
| | : , : , :  |
| 53 | instantiation | 62, 82 | ⊢  |
| | :  |
| 54 | instantiation | 63, 64, 65 | ⊢  |
| | : , : , :  |
| 55 | axiom | | ⊢  |
| | proveit.logic.equality.equals_reflexivity |
| 56 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.positive_if_in_real_pos |
| 57 | instantiation | 91, 67, 66 | ⊢  |
| | : , : , :  |
| 58 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 59 | instantiation | 91, 67, 68 | ⊢  |
| | : , : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
| 61 | instantiation | 69, 78 | ⊢  |
| | :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.negation.real_closure |
| 63 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 64 | instantiation | 79, 70, 84 | ⊢  |
| | : , :  |
| 65 | instantiation | 71, 72, 93, 73, 74, 75, 76, 77, 78 | ⊢  |
| | : , : , : , : , : , :  |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 67 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 68 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| 69 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_complex_closure |
| 70 | instantiation | 79, 81, 82 | ⊢  |
| | : , :  |
| 71 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 72 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 73 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 74 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 75 | instantiation | 80 | ⊢  |
| | : , :  |
| 76 | instantiation | 91, 83, 81 | ⊢  |
| | : , : , :  |
| 77 | instantiation | 91, 83, 82 | ⊢  |
| | : , : , :  |
| 78 | instantiation | 91, 83, 84 | ⊢  |
| | : , : , :  |
| 79 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 80 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 81 | instantiation | 91, 85, 86 | ⊢  |
| | : , : , :  |
| 82 | instantiation | 91, 87, 88 | ⊢  |
| | : , : , :  |
| 83 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 84 | assumption | | ⊢  |
| 85 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 86 | instantiation | 91, 89, 90 | ⊢  |
| | : , : , :  |
| 87 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 88 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.pi_is_real_pos |
| 89 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 90 | instantiation | 91, 92, 93 | ⊢  |
| | : , : , :  |
| 91 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 92 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 93 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| *equality replacement requirements |