| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5*, 6*, 7* | , , , ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.trigonometry.complex_circle_chord_length |
| 2 | instantiation | 8, 9, 10 | , ⊢  |
| | : , :  |
| 3 | reference | 67 | ⊢  |
| 4 | reference | 72 | ⊢  |
| 5 | instantiation | 12, 11 | , , ⊢  |
| | : , :  |
| 6 | instantiation | 12, 13 | , , ⊢  |
| | : , :  |
| 7 | instantiation | 14, 26, 66, 28, 15, 29, 30, 16 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 8 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_nonneg_closure_bin |
| 9 | instantiation | 70, 17, 45 | ⊢  |
| | : , : , :  |
| 10 | instantiation | 70, 17, 46 | ⊢  |
| | : , : , :  |
| 11 | instantiation | 18, 19, 20 | , , ⊢  |
| | : , : , :  |
| 12 | theorem | | ⊢  |
| | proveit.logic.equality.equals_reversal |
| 13 | instantiation | 24, 25, 66, 26, 27, 28, 29, 30, 21 | , , ⊢  |
| | : , : , : , : , : , :  |
| 14 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 15 | instantiation | 70, 71, 43 | ⊢  |
| | : , : , :  |
| 16 | instantiation | 70, 71, 22 | , ⊢  |
| | : , : , :  |
| 17 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real_nonneg |
| 18 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 19 | instantiation | 23, 26, 25, 27, 29, 31, 30 | , , ⊢  |
| | : , : , : , : , : , : , :  |
| 20 | instantiation | 24, 25, 66, 26, 27, 28, 29, 30, 31 | , , ⊢  |
| | : , : , : , : , : , :  |
| 21 | instantiation | 38, 39, 32 | ⊢  |
| | : , :  |
| 22 | instantiation | 33, 34 | , ⊢  |
| | :  |
| 23 | theorem | | ⊢  |
| | proveit.numbers.multiplication.rightward_commutation |
| 24 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 25 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 26 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 27 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 28 | instantiation | 35 | ⊢  |
| | : , :  |
| 29 | instantiation | 70, 71, 36 | ⊢  |
| | : , : , :  |
| 30 | instantiation | 70, 71, 37 | ⊢  |
| | : , : , :  |
| 31 | instantiation | 38, 39, 40 | ⊢  |
| | : , :  |
| 32 | instantiation | 48, 49, 69 | ⊢  |
| | : , :  |
| 33 | theorem | | ⊢  |
| | proveit.trigonometry.real_closure |
| 34 | instantiation | 41, 42, 43, 44 | , ⊢  |
| | : , :  |
| 35 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 36 | instantiation | 70, 56, 45 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 70, 56, 46 | ⊢  |
| | : , : , :  |
| 38 | theorem | | ⊢  |
| | proveit.numbers.exponentiation.exp_complex_closure |
| 39 | instantiation | 70, 71, 47 | ⊢  |
| | : , : , :  |
| 40 | instantiation | 48, 49, 63 | ⊢  |
| | : , :  |
| 41 | theorem | | ⊢  |
| | proveit.numbers.division.div_real_closure |
| 42 | instantiation | 70, 50, 51 | , ⊢  |
| | : , : , :  |
| 43 | instantiation | 70, 52, 53 | ⊢  |
| | : , : , :  |
| 44 | instantiation | 54, 55 | ⊢  |
| | :  |
| 45 | assumption | | ⊢  |
| 46 | assumption | | ⊢  |
| 47 | instantiation | 70, 56, 57 | ⊢  |
| | : , : , :  |
| 48 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_complex_closure_bin |
| 49 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.i_is_complex |
| 50 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_nonneg_within_real |
| 51 | instantiation | 58, 59 | , ⊢  |
| | :  |
| 52 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_within_real |
| 53 | instantiation | 70, 60, 61 | ⊢  |
| | : , : , :  |
| 54 | theorem | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.nonzero_if_is_nat_pos |
| 55 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat2 |
| 56 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.real_pos_within_real |
| 57 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.e_is_real_pos |
| 58 | theorem | | ⊢  |
| | proveit.numbers.absolute_value.abs_complex_closure |
| 59 | instantiation | 62, 63, 64 | , ⊢  |
| | : , :  |
| 60 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.int_within_rational |
| 61 | instantiation | 70, 65, 66 | ⊢  |
| | : , : , :  |
| 62 | theorem | | ⊢  |
| | proveit.numbers.addition.add_complex_closure_bin |
| 63 | instantiation | 70, 71, 67 | ⊢  |
| | : , : , :  |
| 64 | instantiation | 68, 69 | ⊢  |
| | :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_within_int |
| 66 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 67 | assumption | | ⊢  |
| 68 | theorem | | ⊢  |
| | proveit.numbers.negation.complex_closure |
| 69 | instantiation | 70, 71, 72 | ⊢  |
| | : , : , :  |
| 70 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 71 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 72 | assumption | | ⊢  |
| *equality replacement requirements |