| | step type | requirements | statement |
| 0 | instantiation | 1, 2, 3, 4, 5, 6, 7*, 8* | , , , , , , ⊢  |
| | : , : , :  |
| 1 | theorem | | ⊢  |
| | proveit.numbers.division.div_eq_real |
| 2 | reference | 68 | ⊢  |
| 3 | instantiation | 10, 9, 14 | , , , ⊢  |
| | : , : , :  |
| 4 | instantiation | 10, 11, 15 | , , , ⊢  |
| | : , : , :  |
| 5 | instantiation | 12, 68, 41, 49, 13, 14*, 15* | , , , , , ⊢  |
| | : , : , :  |
| 6 | reference | 46 | ⊢  |
| 7 | instantiation | 42, 16, 17 | , , , , ⊢  |
| | : , : , :  |
| 8 | instantiation | 42, 18, 19 | , , , , ⊢  |
| | : , : , :  |
| 9 | instantiation | 65, 41, 68 | , , , ⊢  |
| | : , :  |
| 10 | theorem | | ⊢  |
| | proveit.logic.equality.sub_right_side_into |
| 11 | instantiation | 65, 49, 68 | , , , ⊢  |
| | : , :  |
| 12 | theorem | | ⊢  |
| | proveit.numbers.multiplication.right_mult_eq_real |
| 13 | instantiation | 20, 69, 66, 71, 21 | , , , , ⊢  |
| | : , : , :  |
| 14 | instantiation | 22, 57, 56, 55, 59, 51, 61, 52, 60 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 15 | instantiation | 22, 57, 56, 55, 59, 58, 61, 62, 60 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 16 | instantiation | 42, 23, 24 | , , , , ⊢  |
| | : , : , :  |
| 17 | instantiation | 27, 31 | , , ⊢  |
| | :  |
| 18 | instantiation | 42, 25, 26 | , , , , ⊢  |
| | : , : , :  |
| 19 | instantiation | 27, 37 | , , ⊢  |
| | :  |
| 20 | theorem | | ⊢  |
| | proveit.numbers.multiplication.left_mult_eq_real |
| 21 | instantiation | 28, 77, 74, 76, 29 | , , , ⊢  |
| | : , : , :  |
| 22 | theorem | | ⊢  |
| | proveit.numbers.multiplication.disassociation |
| 23 | instantiation | 32, 30 | , , , ⊢  |
| | : , : , :  |
| 24 | instantiation | 34, 35, 36, 31, 38* | , , , , ⊢  |
| | : , : , :  |
| 25 | instantiation | 32, 33 | , , , ⊢  |
| | : , : , :  |
| 26 | instantiation | 34, 35, 36, 37, 38* | , , , , ⊢  |
| | : , : , :  |
| 27 | theorem | | ⊢  |
| | proveit.numbers.division.frac_one_denom |
| 28 | theorem | | ⊢  |
| | proveit.numbers.addition.right_add_eq_real |
| 29 | assumption | | ⊢  |
| 30 | instantiation | 42, 39, 40 | , , , ⊢  |
| | : , : , :  |
| 31 | instantiation | 78, 70, 41 | , , ⊢  |
| | : , : , :  |
| 32 | axiom | | ⊢  |
| | proveit.logic.equality.substitution |
| 33 | instantiation | 42, 43, 44 | , , , ⊢  |
| | : , : , :  |
| 34 | theorem | | ⊢  |
| | proveit.numbers.division.frac_cancel_left |
| 35 | instantiation | 45, 60, 46 | , ⊢  |
| | :  |
| 36 | instantiation | 78, 47, 48 | ⊢  |
| | : , : , :  |
| 37 | instantiation | 78, 70, 49 | , , ⊢  |
| | : , : , :  |
| 38 | instantiation | 50, 60 | ⊢  |
| | :  |
| 39 | instantiation | 53, 57, 56, 59, 51, 61, 52, 60 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 40 | instantiation | 54, 55, 56, 57, 51, 59, 60, 61, 52 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 41 | instantiation | 65, 69, 66 | , , ⊢  |
| | : , :  |
| 42 | axiom | | ⊢  |
| | proveit.logic.equality.equals_transitivity |
| 43 | instantiation | 53, 57, 56, 59, 58, 61, 62, 60 | , , , ⊢  |
| | : , : , : , : , : , : , :  |
| 44 | instantiation | 54, 55, 56, 57, 58, 59, 60, 61, 62 | , , , ⊢  |
| | : , : , : , : , : , :  |
| 45 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.nonzero_complex_is_complex_nonzero |
| 46 | assumption | | ⊢  |
| 47 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_nonzero_within_complex_nonzero |
| 48 | instantiation | 78, 63, 64 | ⊢  |
| | : , : , :  |
| 49 | instantiation | 65, 69, 71 | , , ⊢  |
| | : , :  |
| 50 | theorem | | ⊢  |
| | proveit.numbers.multiplication.elim_one_right |
| 51 | instantiation | 67 | ⊢  |
| | : , :  |
| 52 | instantiation | 78, 70, 66 | , ⊢  |
| | : , : , :  |
| 53 | theorem | | ⊢  |
| | proveit.numbers.multiplication.leftward_commutation |
| 54 | theorem | | ⊢  |
| | proveit.numbers.multiplication.association |
| 55 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat1 |
| 56 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.nat2 |
| 57 | axiom | | ⊢  |
| | proveit.numbers.number_sets.natural_numbers.zero_in_nats |
| 58 | instantiation | 67 | ⊢  |
| | : , :  |
| 59 | theorem | | ⊢  |
| | proveit.core_expr_types.tuples.tuple_len_0_typical_eq |
| 60 | instantiation | 78, 70, 68 | ⊢  |
| | : , : , :  |
| 61 | instantiation | 78, 70, 69 | ⊢  |
| | : , : , :  |
| 62 | instantiation | 78, 70, 71 | , ⊢  |
| | : , : , :  |
| 63 | theorem | | ⊢  |
| | proveit.numbers.number_sets.real_numbers.rational_nonzero_within_real_nonzero |
| 64 | instantiation | 78, 72, 73 | ⊢  |
| | : , : , :  |
| 65 | theorem | | ⊢  |
| | proveit.numbers.multiplication.mult_real_closure_bin |
| 66 | instantiation | 75, 74, 77 | , ⊢  |
| | : , :  |
| 67 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.tuple_len_2_typical_eq |
| 68 | assumption | | ⊢  |
| 69 | assumption | | ⊢  |
| 70 | theorem | | ⊢  |
| | proveit.numbers.number_sets.complex_numbers.real_within_complex |
| 71 | instantiation | 75, 76, 77 | , ⊢  |
| | : , :  |
| 72 | theorem | | ⊢  |
| | proveit.numbers.number_sets.rational_numbers.nonzero_int_within_rational_nonzero |
| 73 | instantiation | 78, 79, 80 | ⊢  |
| | : , : , :  |
| 74 | assumption | | ⊢  |
| 75 | theorem | | ⊢  |
| | proveit.numbers.addition.add_real_closure_bin |
| 76 | assumption | | ⊢  |
| 77 | assumption | | ⊢  |
| 78 | theorem | | ⊢  |
| | proveit.logic.sets.inclusion.superset_membership_from_proper_subset |
| 79 | theorem | | ⊢  |
| | proveit.numbers.number_sets.integers.nat_pos_within_nonzero_int |
| 80 | theorem | | ⊢  |
| | proveit.numbers.numerals.decimals.posnat1 |
| *equality replacement requirements |