from the theory of proveit.physics.quantum.circuits¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import A, B, ExprTuple, Lambda, S, k
from proveit.logic import Equals
from proveit.physics.quantum.circuits import MultiQubitElem, Output

In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(Lambda([A, B, S], Equals(Equals(MultiQubitElem(element = Output(state = A, part = k), targets = S), MultiQubitElem(element = Output(state = B, part = k), targets = S)), Equals(A, B))))

expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(\left(A, B, S\right) \mapsto \left(\left(\begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{A~\mbox{part}~k~\mbox{on}~S}
} \end{array} = \begin{array}{c} \Qcircuit@C=1em @R=.7em{
& & \qout{B~\mbox{part}~k~\mbox{on}~S}
} \end{array}\right) = \left(A = B\right)\right)\right)

In [5]:
stored_expr.style_options()

no style options
In [6]:
# display the expression information
stored_expr.expr_info()

core typesub-expressionsexpression
0ExprTuple1
1Lambdaparameters: 2
body: 3
2ExprTuple21, 22, 17
3Operationoperator: 8
operands: 4
4ExprTuple5, 6
5Operationoperator: 8
operands: 7
6Operationoperator: 8
operands: 9
7ExprTuple10, 11
8Literal
9ExprTuple21, 22
10Operationoperator: 13
operands: 12
11Operationoperator: 13
operands: 14
12NamedExprselement: 15
targets: 17
13Literal
14NamedExprselement: 16
targets: 17
15Operationoperator: 19
operands: 18
16Operationoperator: 19
operands: 20
17Variable