# from the theory of proveit.physics.quantum.algebra¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
# import Expression classes needed to build the expression
from proveit import ExprTuple
from proveit.numbers import frac, one, sqrt, two
from proveit.physics.quantum import ket0, ket1

In [2]:
# build up the expression from sub-expressions
expr = ExprTuple(frac(one, sqrt(two)), VecAdd(ket0, VecNeg(ket1)))

Out[2]:
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(stored_expr.latex())

\left(\frac{1}{\sqrt{2}}, \lvert 0 \rangle + \left(-\lvert 1 \rangle\right)\right)

In [5]:
stored_expr.style_options()

Out[5]:
namedescriptiondefaultcurrent valuerelated methods
wrap_positionsposition(s) at which wrapping is to occur; 'n' is after the nth comma.()()('with_wrapping_at',)
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'leftleft('with_justification',)
In [6]:
# display the expression information
stored_expr.expr_info()

Out[6]:
core typesub-expressionsexpression
0ExprTuple1, 2
1Operationoperator: 17
operands: 3
2Operationoperator: 4
operands: 5
3ExprTuple22, 6
4Literal
5ExprTuple7, 8
6Operationoperator: 9
operands: 10
7Operationoperator: 19
operand: 15
8Operationoperator: 12
operand: 16
9Literal
10ExprTuple21, 14
11ExprTuple15
12Literal
13ExprTuple16
14Operationoperator: 17
operands: 18
15Literal
16Operationoperator: 19
operand: 22
17Literal
18ExprTuple22, 21
19Literal
20ExprTuple22
21Literal
22Literal