# from the theory of proveit.physics.quantum.QPE¶

In [1]:
import proveit
# Automation is not needed when building an expression:
proveit.defaults.automation = False # This will speed things up.
proveit.defaults.inline_pngs = False # Makes files smaller.
%load_expr # Load the stored expression as 'stored_expr'
# import Expression classes needed to build the expression
from proveit.linalg import TensorExp
from proveit.logic import InSet
from proveit.numbers import Complex, Exp, two
from proveit.physics.quantum import Ket
from proveit.physics.quantum.QPE import n_, u_

In [2]:
# build up the expression from sub-expressions
expr = InSet(Ket(u_), TensorExp([Exp(Complex, two)], n_))

Out[2]:
expr:
In [3]:
# check that the built expression is the same as the stored expression
assert expr == stored_expr
assert expr._style_id == stored_expr._style_id
print("Passed sanity check: expr matches stored_expr")

Passed sanity check: expr matches stored_expr

In [4]:
# Show the LaTeX representation of the expression for convenience if you need it.
print(expr.latex())

\lvert u \rangle \in \left(\mathbb{C}^{2}\right)^{\otimes n}

In [5]:
expr.style_options()

Out[5]:
namedescriptiondefaultcurrent valuerelated methods
operation'infix' or 'function' style formattinginfixinfix
wrap_positionsposition(s) at which wrapping is to occur; '2 n - 1' is after the nth operand, '2 n' is after the nth operation.()()('with_wrapping_at', 'with_wrap_before_operator', 'with_wrap_after_operator', 'wrap_positions')
justificationif any wrap positions are set, justify to the 'left', 'center', or 'right'centercenter('with_justification',)
In [6]:
# display the expression information
expr.expr_info()

Out[6]:
core typesub-expressionsexpression
0Operationoperator: 1
operands: 2
1Literal
2ExprTuple3, 4
3Operationoperator: 5
operand: 9
4Operationoperator: 7
operands: 8
5Literal
6ExprTuple9
7Literal
8ExprTuple10, 11
9Literal
10ExprTuple12
11Literal
12Operationoperator: 13
operands: 14
13Literal
14ExprTuple15, 16
15Literal
16Literal